Lesson 11. Formulating Dynamic Programming Recursions

Formulating DP recursions

- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
	- However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion
- Let's revisit the knapsack problem that we studied back in Lesson 5 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

● We formulated the following dynamic program for this problem by giving the following longest path representation:

• Let's formulate this as a dynamic program, but now by giving its recursion representation

- Let w_t = weight of metal *t* v_t = value of metal *t* for *t* = 1, 2, 3 ● Stages: ● States: • Allowable decisions x_t at stage t and state n : stage $t \leftrightarrow$ {
| consider taking metal t if $t=1,2,3$ end of process if $t = 4$ state $n \longleftrightarrow n$ kg remaining in knapsack for $n = 0, 1, ..., 8$ at stage t and state n:
 x_t must schisfy $x_t \in \{0, 1\}$ $t = 1, 2, 3$: x_t must satisfy $n \geq w_t x_t$ we can take we have enough capacity $t = 4$: no decisions
- Reward of decision x_t at stage t and state n :

$$
v_{\epsilon} x_{\epsilon} = \begin{cases} v_{\epsilon} & \text{if } x_{\epsilon} = 1 \text{ (taken metal t)} & \text{for } t = 1, 2, 3 \\ 0 & 0 \text{ or } 0 \text{ or } 0.5 \end{cases}
$$

• Reward-to go function $f_t(n)$ at stage *t* and state *n*:

$$
f_t(n) = \text{maximum value of the knapsack "/capacity } n \qquad \text{for } t=1,2,3,4
$$
\nand metals $t, t+1, \ldots$ remaining $n=0,1,\ldots,8$

- Boundary conditions: $f_{L_1}(n) = 0$ for $n = 0, 1, ..., 8$
- Recursion:

$$
\oint_{\mathcal{E}}(n) = \max_{\substack{x_{t} \in \{0,1\} \\ \omega_{t}x_{t} \leq n}} \left\{ v_{t} x_{t} + \oint_{t+1} (n - \omega_{t}x_{t}) \right\} \quad \text{for } t = 1, 2, 3
$$

 $f_{1}(\epsilon)$

● Desired reward-to-go function value:

• In general, to formulate a DP with its recursive representation:

Dynamic program – recursive representation

- Stages $t = 1, 2, ..., T$ and states $n = 0, 1, 2, ..., N$
- Allowable **decisions** x_t at stage t and state n ($t = 1, ..., T 1; n = 0, 1, ..., N$)
- **Cost/reward** of decision x_t at stage *t* and state *n* $(t = 1, ..., T; n = 0, 1, ..., N)$
- **Cost/reward-to-go** function $f_t(n)$ at stage *t* and state n ($t = 1, ..., T$; $n = 0, 1, ..., N$)
- **Boundary conditions** on $f_T(n)$ at state *n* $(n = 0, 1, \ldots, N)$
-

• **Recursion** on $f_t(n)$ at stage *t* and state *n* (*t* = 1, ... , *T* − 1; *n* = 0,1, ... , *N*)

$$
f_t(n) = \min_{x_t \text{ allowable}} \text{or } \max_{x_t} \left\{ \left(\begin{array}{c} \text{cost/reward of} \\ \text{decision } x_t \end{array} \right) + f_{t+1} \left(\begin{array}{c} \text{new state} \\ \text{resulting} \\ \text{from } x_t \end{array} \right) \right\}
$$

- **Desired cost-to-go function value**
- How does the recursive representation relate to the shortest/longest path representation?

2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- $\bullet~$ We solve the DP backwards:
	- start with the boundary conditions in stage *T*
	- compute values of the cost-to-go function *ft*(*n*) in stages *T* − 1, *T* − 2, ... , 3, 2
	- ...until we reach the desired cost-to-go function value
- Stage 4 computations boundary conditions:

$$
f_{4}(n) = 0
$$
 for $n = 0, 1, ..., 8$

● Stage 3 computations:

$$
f_3(8) = \max \left\{ f_4(8), 12 + f_4(4) \right\} = \max \left\{ 0, 12 \right\} = 12
$$

\n
$$
f_3(7) = \max \left\{ f_4(7), 12 + f_4(3) \right\} = \max \left\{ 0, 12 \right\} = 12
$$

\n
$$
f_3(6) = \max \left\{ f_4(7), 12 + f_4(3) \right\} = \max \left\{ 0, 12 \right\} = 12
$$

\n
$$
f_3(6) = \max \left\{ f_4(6), 12 + f_4(2) \right\} = \max \left\{ 0, 12 \right\} = 12
$$

\n
$$
f_3(5) = \max \left\{ f_4(5), 12 + f_4(0) \right\} = \max \left\{ 0, 12 \right\} = 12
$$

\n
$$
f_3(4) = \max \left\{ f_4(4), 12 + f_4(0) \right\} = \max \left\{ 0, 12 \right\} = 12
$$

\n
$$
f_3(3) = \max \left\{ f_4(3) \right\} = \max \left\{ 0 \right\} = 0
$$

\n
$$
f_3(1) = \max \left\{ f_4(2) \right\} = \max \left\{ 0 \right\} = 0
$$

\n
$$
f_3(0) = \max \left\{ f_4(0) \right\} = \max \left\{ 0 \right\} = 0
$$

\n
$$
f_3(0) = \max \left\{ f_4(0) \right\} = \max \left\{ 0 \right\} = 0
$$

● Stage 2 computations:

$$
f_{2}(8) = \max \left\{ f_{3}(s), \frac{7}{7} + f_{3}(s) \right\} = \max \left\{ 1_{2}, \frac{7}{7} + 12 \right\} = 19
$$

\n
$$
f_{2}(7) = \max \left\{ f_{3}(4), \frac{7}{7} + f_{3}(5) \right\} = \max \left\{ 1_{2}, \frac{7}{12} \right\} = 19
$$

\n
$$
f_{2}(6) = \max \left\{ f_{3}(6), \frac{7}{7} + f_{3}(9) \right\} = \max \left\{ 1_{2}, \frac{7}{12} \right\} = 19
$$

\n
$$
f_{2}(5) = \max \left\{ f_{3}(5), \frac{7}{7} + f_{3}(3) \right\} = \max \left\{ 1_{1}, \frac{7}{7} \right\} = 12
$$

\n
$$
f_{2}(4) = \max \left\{ f_{3}(7), \frac{7}{7} + f_{3}(3) \right\} = \max \left\{ 1_{1}, \frac{7}{7} \right\} = 12
$$

\n
$$
f_{2}(3) = \max \left\{ f_{3}(7), \frac{7}{7} + f_{3}(1) \right\} = \max \left\{ 0, \frac{7}{7} \right\} = 7
$$

\n
$$
f_{2}(2) = \max \left\{ f_{3}(2), \frac{7}{7} + f_{3}(0) \right\} = \max \left\{ 0, \frac{7}{7} \right\} = 7
$$

\n
$$
f_{2}(1) = \max \left\{ f_{3}(0) \right\} = \max \left\{ 0 \right\} = 0
$$

\n
$$
f_{2}(0) = \max \left\{ f_{3}(0) \right\} = \max \left\{ 0 \right\} = 0
$$

 $\bullet~$ Stage 1 computations – desired cost-to-go function:

$$
f_{1}(8) = \max\left\{f_{2}(8), \frac{11 + f_{2}(5)}{x_{1}=1}\right\} = \max\left\{19, 11+12\right\} = 23
$$

 $\bullet~$ Maximum value of the
ft:

$$
f_1(s) = 23
$$

● Metals to take to achieve this maximum value:

$$
x_1=1
$$
, $x_2=0$, $x_3=1$ \implies Take metals 1 and 3

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of \$5,000. Each batch of beer costs \$2,000 to produce. Batches can be held in inventory at a cost of \$1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Formulating the DP

- Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path representation:
	- \circ Stage *t* represents the beginning of month *t* (*t* = 1, 2, 3) or the end of the decision-making process (*t* = 4).
	- \circ Node t_n represents having *n* batches in inventory at stage t ($n = 0, 1, 2, 3$).

- Let d_t = number of batches required in month *t*, for $t = 1, 2, 3$
- Stages:

stage
$$
t \leftrightarrow \begin{cases} \begin{array}{ccc} \text{begining of } \\ \text{end of } \end{array} & \text{if } t = 1, 2, 3 \\ \text{and of } \\ \text{for } t \in \mathbb{N} \end{cases}
$$

● States:

state n
$$
\leftrightarrow
$$
 n batches in inventory for n = 0, 1, 2, 3

● Allowable decisions *xt* at stage *t* and state *n*: t3: Define see ⁼ # batches to produce in month t he must satisfy : aye { ^o , I , 2,3g [←]production capacity ^O ^E n t set - -dt ^s 3.[←] inventory capacity new inventory t=4 : no decisions

• Reward of decision x_t at stage t and state n :

Let
\n
$$
\mathcal{I}(x_t) = \begin{cases}\n1 & \text{if } x_t > 0 \\
0 & 0 \big|_0\n\end{cases}
$$
\n
$$
\text{Roword:}
$$
\n
$$
5 \mathcal{I}(x_t) + \lambda x_t + 1(n + x_t - d_t)
$$
\n
$$
\text{for } t = 1, 2, 3 \text{ and } n = 0, 1, 2, 3
$$

• Reward-to go function $f_t(n)$ at stage t and state n :

 $f_t(n)$ = minimum cost of meeting demand starting at month t for ز با_{ر ا} بها with initial inventory of n batches $\frac{v}{n=0}$, . . . ,3

- Boundary conditions: $f_{y}(n) = 0$ for $n = 0, 1, 2, 3$
- Recursion:

$$
f_{t}(n) = \min_{\substack{x_{t} \in \{0,1,2,3\} \\ 0 \leq n + x_{t} - d_{t} \leq 3}} \left\{ 5I(x_{t}) + \lambda x_{t} + |(n + x_{t} - d_{t}) + f_{t+1}(n + x_{t} - d_{t}) \right\}
$$

● Desired reward-to-go function value:

$$
\mathcal{L}_1(o)
$$

Solving the DP

$$
f_{t}(n) = \min_{\substack{\mathcal{I}_{t} \in \{0,1,2,3\} \\ 0 \leq n + x_{t} - d_{t} \leq 3}} \left\{ 5 \mathbb{I}(\mathbf{x}_{t}) + \lambda \mathbf{z}_{t} + (n + \mathbf{z}_{t} - d_{t}) + \int_{t+1}^{n} (n + \mathbf{x}_{t} - d_{t}) \right\}
$$

● Stage 4 computations – boundary conditions:

$$
\oint_H (n) = 0 \qquad \qquad \text{for} \quad n = 0, 1, 2, 3
$$

● Stage 3 computations: $(E=3)$

$$
\begin{array}{l}\n\mathbf{1}_{0} \in \{0, 1, 2, 3\} \\
0 \leq 3 + \mathbf{1}_{3} - \mathbf{1}_{5} \leq 3 \\
0 \leq 3 + \mathbf{1}_{3} - \mathbf{1}_{5} \leq 3 \\
\mathbf{1}_{0} \leq 3 + \mathbf{1}_{3} - \mathbf{1}_{5} \leq 3 \\
\mathbf{1}_{0} \leq 3 + \mathbf{1}_{3} - \mathbf{1}_{5} \leq 3\n\end{array}
$$
\n
$$
\begin{array}{l}\n\mathbf{1}_{0} \\
0 \leq 3 + \mathbf{1}_{3} - \mathbf{1}_{5} \\
\mathbf{1}_{1} \\
0 \leq 3 + \mathbf{1}_{3} - \mathbf{1}_{5} \leq 3\n\end{array}
$$
\n
$$
\begin{array}{l}\n\mathbf{1}_{0} \\
0 \leq 3 + \mathbf{1}_{0} \\
0 \leq 2 + \mathbf{1}_{0} \\
0 \leq 2 + \mathbf{1}_{0} \\
0 \leq 2 + \mathbf{1}_{0} \\
\mathbf{1}_{1} \\
0 \leq 3 + \mathbf{1}_{0} \\
0 \leq 3 + \mathbf{1
$$

㱺 no allowable decisions

● Stage 2 computations:

$$
0 \le n + x_{2} - \lambda_{2} \le 3
$$
\n
$$
0 \le 3 + x_{2} - 2 \le 3
$$
\n
$$
0 \le 3 + x_{2} - 2 \le 3
$$
\n
$$
0 \le x_{1} + 1 \le 3
$$
\n
$$
f_{2}(2) = \begin{cases}\n\min\left\{\frac{1}{1}\right\} + \frac{1}{1}\left(3\right) + \frac{1}{1}\left(2\right) + \frac{1}{1}\left(3\right) + \frac{1}{1}\
$$

● Stage 1 computations – desired cost-to-go function:

$$
x_1 \ell \{1, 2, 3\} \qquad f_1(0) = \min \left\{ \frac{30}{5 + 2(1) + 1(0) + f_2(0)} \right\} \qquad 5 + 2(2) + \frac{31}{1(0) + f_2(1)} \qquad 5 + 2(3) + \frac{1}{2}(2) + \frac{1}{2}(2) \right\}
$$

= 30

● Minimum total production and holding cost:

 $f_1(o) = 30$

-
- Production amounts that achieve this minimum value:

$$
x_1 = 1
$$
, $x_2 = 3$, $x_3 = 3$ \implies *Product* 1 *batch in month* 1
3 *batches in months* 2 *and* 3