
SA��� Mathematical Models for Decision Making Spring ���� Uhan

Lesson ��. FormulatingDynamic Programming Recursions

� FormulatingDP recursions

● Last lesson: recursions for shortest path problems

● Dynamic programs are not usually given as shortest/longest path problems

○ However, it is usually easier to think about DPs this way

● Instead, the standard way to describe a dynamic program is a recursion

● Let’s revisit the knapsack problem that we studied back in Lesson � and formulate it as a DP recursion

Example �. You are a thief deciding which preciousmetals to steal from a vault:

Metal Weight (kg) Value

� Gold � ��
� Silver � �
� Platinum � ��

You have a knapsack that can hold atmost �kg. If you decide to take a particularmetal, youmust take all of it. Which
items should you take to maximize the value of your the�?

● We formulated the following dynamic program for this problem by giving the following longest path representa-
tion:

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

end
stage �

take gold?
stage �

take silver?
stage �

take platinum?
stage �
end

end

�

�

�

�

�

�

�

�

�
��

��
��

��
��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
��

��
��

��

�
�

�

�

�

�

�

�
�

source

sink

● Let’s formulate this as a dynamic program, but now by giving its recursion representation

�

● Let
wt = weight ofmetal t vt = value ofmetal t for t = �, �, �

● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Reward of decision xt at stage t and state n:

● Reward-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired reward-to-go function value:

�

stage t ↳ { consider taking metal t if C-=L
, 2,3

end of process if t--4

state n ↳ n kg remaining in knapsack for n-- 0,1, . . ,8

don't take

t 3 : 24 must satisfy metadata pg
, ,f

take metal t

N Z we see
← we can take

metal t only if
we have enough
capacity

t : no decisions

↳ at
= { Vt tf re -- l (take metal t) for t= I

, 2,3

o 01W h= Oil , . . . , 8

f-+ (n) = maximum value of the knapsack Ycapacityn for E-443,4
and metals t

,
Etl , . . . remaining

a-0,1, . . . ,8

f-
↳
(n) = 0 for n=o

,
I
,

. . .

,
8

feln) -- Max { Vere t ft " (n - were, }
for t -- I. 2,3

Xt C- {oil } n= 0,1
, . .

. ,8

WERE En

f. (8)

● In general, to formulate a DP with its recursive representation:

Dynamic program – recursive representation

● Stages t = �, �, . . . , T and states n = �, �, �, . . . ,N
● Allowable decisions xt at stage t and state n (t = �, . . . , T − �; n = �, �, . . . ,N)

● Cost/reward of decision xt at stage t and state n (t = �, . . . , T ; n = �, �, . . . ,N)

● Cost/reward-to-go function ft(n) at stage t and state n (t = �, . . . , T ; n = �, �, . . . ,N)

● Boundary conditions on fT(n) at state n (n = �, �, . . . ,N)

● Recursion on ft(n) at stage t and state n (t = �, . . . , T − �; n = �, �, . . . ,N)

ft(n) =min ormax
xt allowable

��������
cost/reward of
decision xt

� + ft+�� new state
resulting
from xt

��������
● Desired cost-to-go function value

● How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path Recursive

node tn ↔ state n at stage t
edge (tn , (t + �)m) ↔ allowable decision xt in state n at stage t that results in

being in state m at stage t + �
length of edge (tn , (t + �)m) ↔ cost/reward of decision xt in state n at stage t that results

in being in state m at stage t + �
length of shortest/longest path from

node tn to end node
↔ cost/reward-to-go function ft(n)

length of edges (Tn , end) ↔ boundary conditions fT(n)
shortest or longest path ↔ recursion ismin ormax:

ft(n) =min ormax
x t allowable

��������
cost/reward of
decision xt

�+ ft+�� new state
resulting
from xt

��������
source node �n ↔ desired cost-to-go function value f�(n)

�

� SolvingDP recursions

● To improve our understanding of how this recursive representation works, let’s solve the DP we just wrote for
the knapsack problem

● We solve the DP backwards:

○ start with the boundary conditions in stage T
○ compute values of the cost-to-go function ft(n) in stages T − �, T − �, . . . , �, �
○ . . .until we reach the desired cost-to-go function value

● Stage � computations – boundary conditions:

● Stage � computations:

f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =

�

fy (n) -- O for n - o
,
I
, . . .

,
8

max { fu, (8) , 12 t fy (4)) = max { 0 , 12) = 12

max { fy (t) , 12 tf, (3) } = max { 0,12 } = 12

max (fy (6) , 12 t fy (2)) = max (o , 12 } = 12

max { feels) , 12 t fuk) } = max { 0,12 } = 12
E.

max { f-+ (4) , 12 tfy (o) } = max { 0,12 } = 12

maxffy (3) } = max { o } = 0

max { Fy (2) } = max {o } = 0

Max {fy (t) } = max { o } = 0

Max { fy (o) } = max{of = O

● Stage � computations:

f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =
f�(�) =

● Stage � computations – desired cost-to-go function:

● Maximum value of the�:

● Metals to take to achieve thismaximum value:

�

max f f, (8) , 7 t f, (6) } = max { 12 , 7+12 } = 19

max { f, ft) , 7 tf, G)} = max { 12 ,
7+12 } = 19

max { f, (6) , 7 t f, (4) } = max { 12 , 7- H2 } = 19

Max { fz÷5o) , F t fz (31 } = max { 12 , 7 } = 12

Max { fz (y) , 7 t f, (2)} = max { 12,7 } = 12

max { f, (37, 7- tf, (1) } = max { o , 7 } = 7

max { ↳ (21 , 7- tf, Co) } = max {o , 7 } = 7
Max { fsln) = max {of = 0

max { fs (o) } = max fo } = O

f, (8) = max{ false) , 11¥51} = max {19,11+12}=23
24=1

f. (8) = 23

ki -- I
,
da -- O

, dz = I ⇒ Take metals I and 3

Example �. �e Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. �e
companymust supply � batch nextmonth, then � and � in successivemonths. Each month in which the company
produces the beer requires a factory setup cost of ��,���. Each batch of beer costs ��,��� to produce. Batches can be
held in inventory at a cost of ��,��� per batch permonth. Capacity limitations allow amaximum of � batches to be
produced during each month. In addition, the size of the company’s warehouse restricts the ending inventory for each
month to atmost � batches. �e company has no initial inventory.

�e company wants to �nd a production plan that will meet all demands on time andminimizes its total production
and holding costs over the next � months. Formulate this problem as a dynamic program by giving its recursive
representation. Solve the dynamic program.

Formulating the DP

● Recall that in Lesson �, we formulated this problem as a dynamic program with the following shortest path
representation:

○ Stage t represents the beginning ofmonth t (t = �, �, �) or the end of the decision-making process (t = �).○ Node tn represents having n batches in inventory at stage t (n = �, �, �, �).

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

end

Stage � Stage � Stage � Stage �

�

�

�

�

source sink

Month Production amount Edge Edge length

� � (�n , �n−�) for n = �, �, � �(n − �)
� � (�n , �n) for n = �, �, �, �, � � + �(�) + �(n)
� � (�n , �n+�) for n = �, �, � � + �(�) + �(n + �)
� � (�n , �n+�) for n = �, � � + �(�) + �(n + �)
� � (�n , �n−�) for n = �, � �(n − �)
� � (�n , �n−�) for n = �, �, � � + �(�) + �(n − �)
� � (�n , �n) for n = �, �, �, � � + �(�) + �(n)
� � (�n , �n+�) for n = �, �, � � + �(�) + �(n + �)
� � not possible
� � (�n , �n−�) for n = � � + �(�) + �(n − �)
� � (�n , �n−�) for n = �, � � + �(�) + �(n − �)
� � (�n , �n−�) for n = �, �, � � + �(�) + �(n − �)

�

● Let dt = number of batches required in month t, for t = �, �, �
● Stages:

● States:

● Allowable decisions xt at stage t and state n:

● Reward of decision xt at stage t and state n:

● Reward-to go function ft(n) at stage t and state n:

● Boundary conditions:

● Recursion:

● Desired reward-to-go function value:

�

stage t ↳ { beginning of month t if t⇒ , 2,3

end of process if E-4

state n es n batches in inventory for n -- o , I , 2. , 3

t3 : Define see = # batches to produce in month t

he must satisfy : aye { o , I , 2,3g
← production capacity

O E n t set - dt s 3.← inventory
-

capacity

new inventory
t=4 : no decisions

Let

I(see) = { !
if he > 0 Reward:

b- Ifat) t 2kt t l (n tae- dt)
Yw

for f- =L, 2,3 ; n -- O, 1,213

ftln) = minimum cost of meeting demand starting at month t for
E- I, . . >4;

with initial inventory of n batches
n=o. . . . ,3

fy (n) = O for n= Oil , 2,3

ftln) =
*ehfoi,7.2.33 { 5Ike) t 2 net I Cnt see- dt) tf# (n tht- de)}
o Ent ke- def 3 for f-=L, 2,3 ; n= 0,1, -2,3

f. (o)

Solving the DP

● Stage � computations – boundary conditions:

● Stage � computations:

f�(�) =

f�(�) =
f�(�) =
f�(�) =

● Stage � computations:

f�(�) =

f�(�) =

f�(�) =
f�(�) =

● Stage � computations – desired cost-to-go function:

● Minimum total production and holding cost:

● Production amounts that achieve thisminimum value:

�

Hm ;:÷÷I¥f5H⇒t2mt"I71377%17.7*16
f-+ (n) = O for n= 0,1 , 2,3

(E-3)

7 10 13
k3t{ O' ""33

min{5+247+1 (o)tf4(o), 5+2121+14) t full) , 5+2137+1 (2) tf, 1213=7013+13-413 (n=3) qz= , Nz -- 2 H3=3

dzE{0,443} 9 12

oosztaez-413 min { 5+212) t Ilo) + tyco), 5+2137+14) t fall)} = gN3=2 Rz=3
⇒ dzE{213} 11

min { 5+2137+16) tfalo) } = 11
Nz C- {3} 2h53

N3E{0,112,3}
Of otters-413

too

⇒ no allowable
decisions

0Entx
.
- da 's min { 14) Itza) , 5+243+1/28) tfzla) , 5+212)ti%)tfz(373=12

of 3+22- 213 £2=O H2- I sez=2
too 19

of Mtl E3 min { Ilo) tfzlo) , 5t2(1) tl(Dtfsll) ,
Az=O

zo
H2" I

21

5+212)tl(2) tf, (2), 5+213)t1(3) tfzfs)) - 1912=2 Nz=3

min{ 5+24711%0) tfzlo) , 5t2(2)at!I&DtfzCD, 5+213)ta2Iz)tfzla) } = 21
min{ 51-212) Italo) tfzlo) , 51-213) till)tfz4) } = 23

kz=2 Az =3

a,e{ 42,33 f. (o) -- min { 51-2411-3%10) tfzco), 5+212)t%o)t fall), 5+2137+1%22> + fzcz)}K, =L Up =3 K
, =3

= 30

Filo) = 30

24=1 , Nz =3 , Rz =3 → Produce 1 batch in month I

3 batches in months 2 and 3

