Lesson 11. Formulating Dynamic Programming Recursions

1 Formulating DP recursions

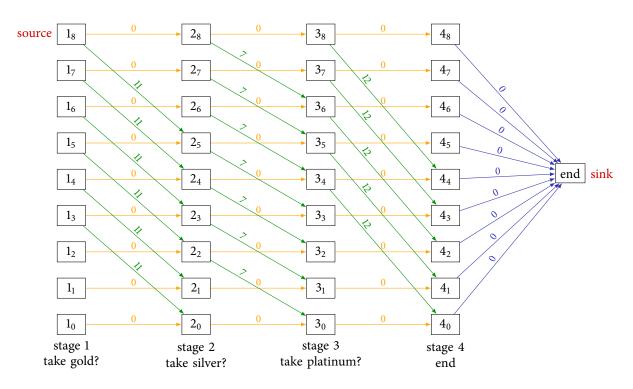
- Last lesson: recursions for shortest path problems
- Dynamic programs are not usually given as shortest/longest path problems
 - However, it is usually easier to think about DPs this way
- Instead, the standard way to describe a dynamic program is a recursion
- Let's revisit the knapsack problem that we studied back in Lesson 5 and formulate it as a DP recursion

Example 1. You are a thief deciding which precious metals to steal from a vault:

	Metal	Weight (kg)	Value
1	Gold	3	11
2	Silver	2	7
3	Platinum	4	12

You have a knapsack that can hold at most 8kg. If you decide to take a particular metal, you must take all of it. Which items should you take to maximize the value of your theft?

• We formulated the following dynamic program for this problem by giving the following longest path representation:



• Let's formulate this as a dynamic program, but now by giving its recursion representation

• Let

$$w_t = \text{weight of metal } t$$
 $v_t = \text{value of metal } t$ for $t = 1, 2, 3$
• Stages:
 $stage t \leftrightarrow \{ \text{ considen taking metal } t \text{ if } t = 1, 2, 3 \\ \text{ end of process} \text{ if } t = 4 \}$
• States: $state n \leftrightarrow n \text{ kg remaining in knapsack for } n = 0, 1, ..., 8$
• Allowable decisions x_t at stage t and state n :
 $t = 1, 2, 3$ x_t must schisfy $x_t \in \{0, 1\}$
 $n \ge W_t \times t$ we can take
 $t = 1, 2, 3$ x_t must schisfy $x_t \in \{0, 1\}$
 $n \ge W_t \times t$ we can take
 $t = 1, 2, 3$ x_t must schisfy $x_t \in \{0, 1\}$
 $n \ge W_t \times t$ we can take
 $x_t = 1, 2, 3$ x_t must schisfy $x_t \in \{0, 1\}$
 $t = 1, 2, 3$ x_t must schisfy $x_t \in \{0, 1\}$
 $n \ge W_t \times t$ we can take
 $x_t = 1, 2, 3$ x_t must schisfy $x_t \in \{0, 1\}$
 $x_t \in \{0, 1\}$

• Reward of decision *x*_t at stage *t* and state *n*:

$$v_t x_t = \begin{cases} v_t & \text{if } x_t = 1 \text{ (take metal } t) & \text{for } t = 1, 2, 3 \\ 0 & 0 \\ w & n = 0, 1, \dots, 8 \end{cases}$$

• Reward-to go function $f_t(n)$ at stage *t* and state *n*:

$$f_t(n) = maximum value of the knapsack "/capacity n for t=1,2,3,4$$

and metals t, t+1,... remaining $n=0,1,...,8$

- Boundary conditions: $f_4(n) = 0$ for n = 0, 1, ..., 8
- Recursion:

$$f_{t}(n) = \max_{\substack{\chi_{t} \in \{0,1\}\\ W_{b} \times t \leq n}} \left\{ \begin{array}{l} \nabla_{t} \chi_{t} + f_{t+1}(n - w_{t} \chi_{t}) \right\} & \text{for } t = 1, 2, 3 \\ n = 0, 1, \dots, 8 \end{array}$$

f,(8)

• Desired reward-to-go function value:

• In general, to formulate a DP with its recursive representation:

Dynamic program - recursive representation

- **Stages** t = 1, 2, ..., T and **states** n = 0, 1, 2, ..., N
- Allowable decisions x_t at stage t and state n (t = 1, ..., T 1; n = 0, 1, ..., N)
- **Cost/reward** of decision x_t at stage t and state n (t = 1, ..., T; n = 0, 1, ..., N)
- **Cost/reward-to-go** function $f_t(n)$ at stage *t* and state *n* (t = 1, ..., T; n = 0, 1, ..., N)
- **Boundary conditions** on $f_T(n)$ at state n
- **Recursion** on $f_t(n)$ at stage *t* and state *n*

$$(n = 0, 1, \dots, N)$$

 $(t = 1, \dots, T - 1; n = 0, 1, \dots, N)$

$$f_t(n) = \min_{x_t \text{ allowable}} \operatorname{cost/reward of}_{decision x_t} + f_{t+1} \begin{pmatrix} \operatorname{new state}_{resulting} \\ \operatorname{from} x_t \end{pmatrix}$$

- Desired cost-to-go function value
- How does the recursive representation relate to the shortest/longest path representation?

Shortest/longest path		Recursive	
node <i>t_n</i>	\leftrightarrow	state <i>n</i> at stage <i>t</i>	
$edge(t_n,(t+1)_m)$	\leftrightarrow	allowable decision x_t in state n at stage t that results in being in state m at stage $t + 1$	
length of edge $(t_n, (t+1)_m)$		cost/reward of decision x_t in state n at stage t that results in being in state m at stage $t + 1$	
length of shortest/longest path from node t_n to end node	\leftrightarrow	cost/reward-to-go function $f_t(n)$	
length of edges (T_n, end)	\leftrightarrow	boundary conditions $f_T(n)$	
shortest or longest path	\leftrightarrow	recursion is min or max:	
		$f_t(n) = \min_{x_t \text{ allowable}} \operatorname{ext} \left\{ \begin{pmatrix} \operatorname{cost/reward of} \\ \operatorname{decision} x_t \end{pmatrix} + f_{t+1} \begin{pmatrix} \operatorname{new state} \\ \operatorname{resulting} \\ \operatorname{from} x_t \end{pmatrix} \right\}$	
source node 1_n	\leftrightarrow	desired cost-to-go function value $f_1(n)$	

2 Solving DP recursions

- To improve our understanding of how this recursive representation works, let's solve the DP we just wrote for the knapsack problem
- We solve the DP backwards:
 - $\circ~$ start with the boundary conditions in stage T
 - compute values of the cost-to-go function $f_t(n)$ in stages T 1, T 2, ..., 3, 2
 - $\circ \ \ldots$ until we reach the desired cost-to-go function value
- Stage 4 computations boundary conditions:

$$f_{y}(n) = 0$$
 for $n = 0, 1, ..., 8$

• Stage 3 computations:

$$f_{3}(8) = \max \left\{ \begin{array}{c} f_{4}(8), \ 12 + f_{4}(4) \right\} = \max \left\{ 0, 12 \right\} = 12 \\ f_{3}(7) = \max \left\{ f_{4}(4), \ 12 + f_{4}(3) \right\} = \max \left\{ 0, 12 \right\} = 12 \\ f_{3}(6) = \max \left\{ f_{4}(4), \ 12 + f_{4}(2) \right\} = \max \left\{ 0, 12 \right\} = 12 \\ f_{3}(5) = \max \left\{ f_{4}(5), \ 12 + f_{4}(1) \right\} = \max \left\{ 0, 12 \right\} = 12 \\ f_{3}(4) = \max \left\{ f_{4}(5), \ 12 + f_{4}(0) \right\} = \max \left\{ 0, 12 \right\} = 12 \\ f_{3}(3) = \max \left\{ f_{4}(3) \right\} = \max \left\{ 0 \right\} = 0 \\ f_{3}(2) = \max \left\{ f_{4}(2) \right\} = \max \left\{ 0 \right\} = 0 \\ f_{3}(0) = \max \left\{ f_{4}(0) \right\} = \max \left\{ 0 \right\} = 0 \\ max \left\{ f_{4}(0) \right\} = \max \left\{ 0 \right\} = 0 \\ max \left\{ f_{4}(0) \right\} = \max \left\{ 0 \right\} = 0 \\ f_{3}(0) = \max \left\{ f_{4}(0) \right\} = \max \left\{ 0 \right\} = 0 \\ max \left\{ 0 \right\} = 0 \\ max \left\{ f_{4}(0) \right\} = \max \left\{ 0 \right\} = 0 \\ max \left\{$$

• Stage 2 computations:

$$f_{2}(8) = \max \left\{ f_{3}(8), 7 + f_{3}(6) \right\} = \max \left\{ 12, 7 + 12 \right\} = 19$$

$$f_{2}(7) = \max \left\{ f_{3}(4), 7 + f_{3}(5) \right\} = \max \left\{ 12, 7 + 12 \right\} = 19$$

$$f_{2}(6) = \max \left\{ f_{3}(4), 7 + f_{3}(4) \right\} = \max \left\{ 12, 7 + 12 \right\} = 19$$

$$f_{2}(5) = \max \left\{ \frac{f_{3}(5)}{X_{2}=0}, 7 + f_{3}(3) \right\} = \max \left\{ 12, 7 + 12 \right\} = 12$$

$$f_{2}(4) = \max \left\{ \frac{f_{3}(5)}{X_{2}=0}, 7 + f_{3}(2) \right\} = \max \left\{ 12, 7 \right\} = 12$$

$$f_{2}(3) = \max \left\{ f_{3}(4), 7 + f_{3}(2) \right\} = \max \left\{ 12, 7 \right\} = 12$$

$$f_{2}(2) = \max \left\{ f_{3}(2), 7 + f_{3}(1) \right\} = \max \left\{ 0, 7 \right\} = 7$$

$$f_{2}(1) = \max \left\{ f_{3}(1) \right\} = \max \left\{ 0 \right\} = 0$$

$$f_{2}(0) = \max \left\{ f_{3}(0) \right\} = \max \left\{ 0 \right\} = 0$$

• Stage 1 computations – desired cost-to-go function:

$$f_1(8) = \max \{ f_2(8), \frac{11 + f_2(5)}{x_1 = 1} \} = \max \{ 19, 11 + 12 \} = 23$$

• Maximum value of theft:

$$f_{1}(8) = 23$$

• Metals to take to achieve this maximum value:

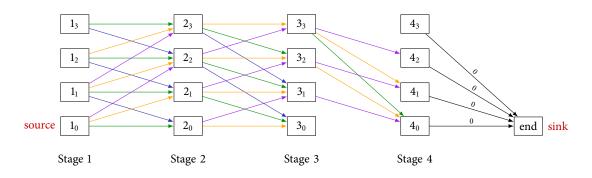
$$\chi_1 = 1$$
, $\chi_2 = 0$, $\chi_3 = 1 \implies$ Take metals 1 and 3

Example 2. The Dijkstra Brewing Company is planning production of its new limited run beer, Primal Pilsner. The company must supply 1 batch next month, then 2 and 4 in successive months. Each month in which the company produces the beer requires a factory setup cost of \$5,000. Each batch of beer costs \$2,000 to produce. Batches can be held in inventory at a cost of \$1,000 per batch per month. Capacity limitations allow a maximum of 3 batches to be produced during each month. In addition, the size of the company's warehouse restricts the ending inventory for each month to at most 3 batches. The company has no initial inventory.

The company wants to find a production plan that will meet all demands on time and minimizes its total production and holding costs over the next 3 months. Formulate this problem as a dynamic program by giving its recursive representation. Solve the dynamic program.

Formulating the DP

- Recall that in Lesson 9, we formulated this problem as a dynamic program with the following shortest path representation:
 - Stage *t* represents the beginning of month t (t = 1, 2, 3) or the end of the decision-making process (t = 4).
 - Node t_n represents having *n* batches in inventory at stage t (n = 0, 1, 2, 3).



Month	Production amount	Edge		Edge length
1	0	$(1_n, 2_{n-1})$	for <i>n</i> = 1, 2, 3	1(n-1)
1	1	$(1_n, 2_n)$	for $n = 0, 1, 2, 3, 4$	5+2(1)+1(n)
1	2	$(1_n, 2_{n+1})$	for $n = 0, 1, 2$	5+2(2)+1(n+1)
1	3	$(1_n,2_{n+2})$	for $n = 0, 1$	5+2(3)+1(n+2)
2	0	$(2_n, 3_{n-2})$	for <i>n</i> = 2, 3	1(n-2)
2	1	$(2_n, 3_{n-1})$	for $n = 1, 2, 3$	5+2(1)+1(n-1)
2	2	$(2_n, 3_n)$	for $n = 0, 1, 2, 3$	5+2(2)+1(n)
2	3	$(2_n,3_{n+1})$	for $n = 0, 1, 2$	5+2(3)+1(n+1)
3	0	not possible		
3	1	$(3_n, 4_{n-3})$	for $n = 3$	5+2(1)+1(n-3)
3	2	$(3_n, 4_{n-2})$	for $n = 2, 3$	5+2(2)+1(n-2)
3	3	$(3_n, 4_{n-1})$	for <i>n</i> = 1, 2, 3	5+2(3)+1(n-1)

- Let d_t = number of batches required in month t, for t = 1, 2, 3
- Stages:

stage t
$$\leftrightarrow$$
 { beginning of month t if t=1,2,3
end of process if t=4

• States:

state
$$n \leftrightarrow n$$
 batches in inventory for $n = 0, 1, 2, 3$

• Allowable decisions *x*_t at stage *t* and state *n*:

$$t=1,2,3$$
: Define $x_t = #$ batches to produce in month t
 x_t must satisfy: $x_t \in \{0, 1, 2, 3\}$ production capacity
 $0 \le n + 2t - dt \le 3c$ inventory
 $t=4$: no decisions

• Reward of decision *x*_t at stage *t* and state *n*:

Let

$$I(x_t) = \begin{cases} 1 & \text{if } x_t > 0 \\ 0 & 0 \end{bmatrix}_{W}$$
Reward:
 $5 I(x_t) + 2 x_t + 1(n + x_t - d_t)$
for $t = 1, 2, 3; n = 0, 1, 2, 3$

• Reward-to go function $f_t(n)$ at stage *t* and state *n*:

$$f_t(n) = minimum cost of meeting demand starting at month t forwith initial inventory of n batches $n=0,...,3$$$

- Boundary conditions: $f_{y}(n) = 0$ for n = 0, 1, 2, 3
- Recursion:

$$f_{t}(n) = \min_{\substack{x_{t} \in \{0,1\}, 2,3\}\\0 \le n + x_{t} - d_{t} \le 3}} \left\{ 5I(x_{t}) + dx_{t} + I(n + x_{t} - d_{t}) + f_{t+1}(n + x_{t} - d_{t}) \right\}$$
for $t = 1, 2, 3$; $n = 0, 1, 2, 3$

• Desired reward-to-go function value:

Solving the DP

$$f_{t}(n) = \min_{\substack{x_{t} \in \{0,1\},2,3\}\\0 \le n+x_{t}-d_{t} \le 3}} \begin{cases} 5I(x_{t}) + \lambda x_{t} + I(n+x_{t}-d_{t}) + f_{t+1}(n+x_{t}-d_{t}) \\ f_{0} = 0, 1, 2, 3 \end{cases}$$

• Stage 4 computations – boundary conditions:

$$f_4(n) = 0$$
 for $n = 0, 1, 2, 3$

• Stage 3 computations: (1=3)

$$\begin{array}{c} \textbf{x}_{3} \in \{0, 1, 2, 3\} \\ 0 \leq 3 + \textbf{x}_{3} - 4 \leq 3 \\ (n = 3) \end{array} \quad f_{3}(3) = \\ \begin{array}{c} \text{min} \left\{ \begin{array}{c} 5 + \lambda(1) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 1 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(1) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 1 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(1) + f_{4}(1), \\ \textbf{x}_{3} = 2 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 2 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 2 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 2 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 2 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 2 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + f_{4}(0), \\ \textbf{x}_{3} = 3 \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + 1(0) + 1(0) + 1(0) \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + 1(0) + 1(0) + 1(0) + 1(0) \end{array} \right\} \\ \textbf{min} \left\{ \begin{array}{c} 5 + \lambda(2) + 1(0) + 1(0) + 1(0) + 1(0) + 1(0) + 1(0) + 1(0) + 1$$

$$\begin{array}{l} 0 \leq n + z_{2} - d_{2} \leq 3 \\ p \leq 3 + z_{2} - 2 \leq 3 \\ o \leq z_{2} + 1 \leq 3 \\ f_{2}(2) = \end{array} \begin{array}{l} 12 \\ min \left\{ 1(1) + f_{3}(1), 5 + \lambda(1) + 1(\lambda) + f_{3}(\lambda), 5 + \lambda(2) + 1(3) + f_{3}(3) \right\} = 12 \\ \frac{+\infty}{z_{2} + 1} \leq 3 \\ f_{2}(2) = \end{array} \begin{array}{l} 12 \\ min \left\{ 1(0) + f_{3}(0), 5 + \lambda(1) + 1(\lambda) + f_{3}(\lambda), \\ z_{2} = 0 \\ f_{2}(2) = \end{array} \begin{array}{l} 12 \\ min \left\{ 1(0) + f_{3}(0), 5 + \lambda(1) + 1(\lambda) + f_{3}(\lambda), \\ z_{2} = 0 \\ f_{2}(2) = \end{array} \begin{array}{l} 21 \\ f_{2}(1) = \\ f_{2}(1) = \end{array} \begin{array}{l} 12 \\ min \left\{ 5 + \lambda(1) + 1(0) + f_{3}(0), 5 + \lambda(2) + 1(\lambda) + f_{3}(\lambda), \\ z_{2} = 2 \\ f_{2}(0) = \end{array} \begin{array}{l} 22 \\ min \left\{ 5 + \lambda(2) + 1(0) + f_{3}(0), 5 + \lambda(2) + 1(\lambda) + f_{3}(\lambda), \\ z_{2} = 2 \\ f_{2}(2) = \end{array} \right\} \begin{array}{l} 22 \\ p = 2 \end{array}$$

• Stage 1 computations – desired cost-to-go function:

$$\begin{array}{ccc} x_{1} \in \{1, 2, 3\} \\ f_{1}(0) = \min \left\{ \begin{array}{c} 30 \\ 5 + 2(1) + 1(0) + f_{2}(0) \\ x_{1} = 1 \end{array} \right\} \begin{array}{c} 31 \\ 5 + 2(2) + 1(0) + f_{2}(1) \\ x_{1} = 2 \end{array} \begin{array}{c} 31 \\ (0) + f_{2}(1) \\ 5 + 2(3) + 1(2) + f_{2}(2) \\ x_{1} = 3 \end{array} \right\} \\ = 30 \end{array}$$

• Minimum total production and holding cost:

 $f_{1}(0) = 30$

- Production amounts that achieve this minimum value:

$$x_1 = 1$$
, $x_2 = 3$, $x_3 = 3$ \implies Produce 1 batch in month 1
3 batches in months 2 and 3